Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Clin Infect Dis ; 75(1): e715-e725, 2022 08 24.
Article in English | MEDLINE | ID: covidwho-1722267

ABSTRACT

BACKGROUND: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant of concern (VOC) B.1.617.2 (Delta) displaced B.1.1.7 (Alpha) and is associated with increases in coronavirus disease 2019 (COVID-19) cases, greater transmissibility, and higher viral RNA loads, but data are lacking regarding the infectious virus load and antiviral antibody levels in the nasal tract. METHODS: Whole genome sequencing, cycle threshold (Ct) values, infectious virus, anti-SARS-CoV-2 immunoglobulin G (IgG) levels, and clinical chart reviews were combined to characterize SARS-CoV-2 lineages circulating in the National Capital Region between January and September 2021 and differentiate infections in vaccinated and unvaccinated individuals by the Delta, Alpha, and B.1.2 (the predominant lineage prior to Alpha) variants. RESULTS: The Delta variant displaced the Alpha variant to constitute 99% of the circulating lineages in the National Capital Region by August 2021. In Delta infections, 28.5% were breakthrough cases in fully vaccinated individuals compared to 4% in the Alpha infected cohort. Breakthrough infections in both cohorts were associated with comorbidities, but only Delta infections were associated with a significant increase in the median days after vaccination. More than 74% of Delta samples had infectious virus compared to <30% from the Alpha cohort. The recovery of infectious virus with both variants was associated with low levels of local SARS-CoV-2 IgG. CONCLUSIONS: Infection with the Delta variant was associated with more frequent recovery of infectious virus in vaccinated and unvaccinated individuals compared to the Alpha variant but was not associated with an increase in disease severity in fully vaccinated individuals. Infectious virus was correlated with the presence of low amounts of antiviral IgG in the nasal specimens.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Antiviral Agents , Humans , Immunoglobulin G , SARS-CoV-2/genetics
2.
Clin Infect Dis ; 73(4): e860-e869, 2021 08 16.
Article in English | MEDLINE | ID: covidwho-1360338

ABSTRACT

BACKGROUND: Repeated coronavirus disease 2019 (COVID-19) molecular testing can lead to positive test results after negative results and to multiple positive results over time. The association between positive test results and infectious virus is important to quantify. METHODS: A 2-month cohort of retrospective data and consecutively collected specimens from patients with COVID-19 or patients under investigation were used to understand the correlation between prolonged viral RNA positive test results, cycle threshold (Ct) values and growth of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in cell culture. Whole-genome sequencing was used to confirm virus genotype in patients with prolonged viral RNA detection. Droplet digital polymerase chain reaction was used to assess the rate of false-negative COVID-19 diagnostic test results. RESULTS: In 2 months, 29 686 specimens were tested and 2194 patients underwent repeated testing. Virus recovery in cell culture was noted in specimens with a mean Ct value of 18.8 (3.4) for SARS-CoV-2 target genes. Prolonged viral RNA shedding was associated with positive virus growth in culture in specimens collected up to 21 days after the first positive result but mostly in individuals symptomatic at the time of sample collection. Whole-genome sequencing provided evidence the same virus was carried over time. Positive test results following negative results had Ct values >29.5 and were not associated with virus culture. Droplet digital polymerase chain reaction results were positive in 5.6% of negative specimens collected from patients with confirmed or clinically suspected COVID-19. CONCLUSIONS: Low Ct values in SARS-CoV-2 diagnostic tests were associated with virus growth in cell culture. Symptomatic patients with prolonged viral RNA shedding can also be infectious.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , RNA, Viral/genetics , Retrospective Studies , Virus Shedding
SELECTION OF CITATIONS
SEARCH DETAIL